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Abstract
A Painlevé (P) test of the coupled Gross–Pitaevskii equations has been carried
out with the result that the coupled equations pass the P test only if a
special relation containing system parameters (masses and scattering lengths)
is satisfied. Computer algebra is applied to evaluate the j = 4 compatibility
condition for admissible external potentials. The appearance of an arbitrary real
potential embedded in the external potentials is shown to be the consequence
of the coupling. The connection with recent experiments related to the stability
of two-component Bose–Einstein condensates of Rb atoms is discussed.

PACS numbers: 0375F, 0545, 3280P

1. Introduction

Recently there has been a growing interest in the Gross–Pitaevskii (GP) equations [1, 2]
describing two-component Bose–Einstein condensates (BECs) in external trap potentials [3–
22]. In the absence of the confining potential, the GP equations reduce to the coupled
nonlinear Schrödinger (NLS) equations, which play an important role in optics [23]. Coupled
GP equations are also used to describe Josephson-type oscillations between two coupled
BECs [9–11] or the spin-mixing dynamics of spinor BECs [12–15], or to explore such
interesting field of matter waves as possible atomic soliton lasers [4, 24, 25].

An efficient tool of the analysis of the nonlinear partial differential equations is the
Painlevé (P) method [26,27], which serves to explore the singularity structure of the underlying
equations, and establish integrability conditions [28]. The P analysis of the single NLS equation
has been performed by Steeb et al [29], and the damped NLS (or the GP) equation has been
investigated by Clarkson [30]. A fairly large class of coupled NLS equations including third-
order dispersions has been analysed by Radhakrishnan et al [31]. Recently the symmetrically
coupled higher-order NLS equations have been tested by using the P method [32].

Because of the experimental developments in forming two-component BECs [16] and
the possibility of confining BECs in a linear shape [33], we shall perform the P test of the
coupled one-dimensional GP equations in order to establish certain necessary conditions of
integrability. (The term integrability is used here in the general sense [27, 28] involving the
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P property and soliton formation.) The results obtained for the trap potentials are similar to
those found by Clarkson [30] in the case of the damped NLS equations: the trap potential
should be linear and/or quadratic in the coordinate variable x. In the quadratic case a source
term depending only on time t should also be present in the external potential V (x, t).

A novel feature of our analysis is the possibility of the appearance of an arbitrary common
potential term Ṽ (x, t) within the confining potentials V1(x, t) and V2(x, t). Its presence
may prove useful for fine tuning experiments with two-component BECs. We consider the
system of coupled GP equations in its most general form containing different masses, external
potentials and mutual coupling strengths. As a result we shall derive compatibility conditions,
the fulfillment of which depends on the parameters characterizing the GP equations. We show
that in a particular experiment [7], employing two hyperfine states of Rb atoms as components
of the BEC, the vortex stability corresponds to just the parameter ratios satisfying our general
formula derived in this paper.

The organization of this paper is as follows. In section 2 the P analysis of two coupled
GP equations will be carried out including the determination of the leading orders, the
recursion relations, the resonances and the compatibility conditions. The consequences of the
compatibility relations for the potentials are discussed in section 3, where other consistency
requirements are also studied. In section 4 we make comparisons with earlier results and
investigate compatibilities with existing experimental and numerical findings related to two-
component BECs. Section 5 is devoted to a short summary.

2. Painlevé test

Let us consider the following (1 + 1)-dimensional inhomogeneous NLS equations for the
wavefunctions ψ1 and ψ2 with the external potentials U1(x, t) and U2(x, t):

ih̄
∂

∂t
ψ1(x, t) =

(
− h̄2

2m1
∇2 + U1(x, t) + U11 |ψ1(x, t)|2 + U12 |ψ2(x, t)|2

)
ψ1(x, t) + U10

(2.1a)

ih̄
∂

∂t
ψ2(x, t) =

(
− h̄2

2m2
∇2 + U2(x, t) + U21 |ψ1(x, t)|2 + U22 |ψ2(x, t)|2

)
ψ2(x, t) + U20

(2.1b)

which, in the absence of the inhomogeneities U10 and U20, are commonly called the coupled
GP equations [1, 2].

Here mi denotes the mass of the atomic species i (i = 1, 2) of the two-component BEC
gas and Uij is related to the interactions between the atoms i and j (i, j = 1, 2) via the
relation Uij = 2πh̄2aijNj/Aµij , where Nj means the number of atoms in the j th component
of the BEC, aij is the scattering length characterizing the interaction between atoms i and j , A
represents a general cross sectional area confining species i and j and µij = mimj/(mi + mj)

is the reduced mass.
By introducing the new parameters

λ = h̄

2m1
ϑ = h̄

2m2
Tij = 1

h̄
Uij (i, j = 1, 2) (2.2a)

and notations

u = ψ1 w = ψ2 Vi = 1

h̄
Ui Vi0 = 1

h̄
Ui0 (i = 1, 2) (2.2b)

we write the GP equations into the standard form of the P analysis

iut + λuxx − T11 |u|2 u − T12 |w|2 u = V1u + V10 (2.3a)
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iwt + ϑwxx − T21 |u|2 w − T22 |w|2 w = V2w + V20 (2.3b)

where Tij and λ, ϑ represent, as defined by equation (2.2a), the interaction and mass
parameters, respectively.

In order to apply the P analysis, we first complexify all variables to obtain equations (2.3a)
and (2.3b) in the form (v = u∗, z = w∗)

iut + λuxx − T11u
2v − T12wzu = V1u + V10 (2.4a)

−ivt + λvxx − T11uv
2 − T12wzv = V ∗

1 v + V ∗
10 (2.4b)

iwt + ϑwxx − T21uvw − T22w
2z = V2w + V20 (2.4c)

−izt + ϑzxx − T21uvz − T22wz2 = V ∗
2 z + V ∗

20 (2.4d)

where the functions u, v, w and z are treated as independent complex functions of the complex
variables x and t , and V ∗

1 (x, t), V ∗
10(x, t), V

∗
2 (x, t) and V ∗

20(x, t) are formal complex conjugates
of V1(x, t), V10(x, t), V2(x, t) and V20(x, t), respectively.

The next step is to seek the solutions of (2.4a)–(2.4d) in the form

u(x, t) = φp(x, t)

∞∑
j=0

uj (t)φ
j (x, t) v(x, t) = φq(x, t)

∞∑
j=0

vj (t)φ
j (x, t) (2.5a)

w(x, t) = φr(x, t)

∞∑
j=0

wj(t)φ
j (x, t) z(x, t) = φs(x, t)

∞∑
j=0

zj (t)φ
j (x, t) (2.5b)

with the Kruskal ansatz

φ(x, t) = x − ξ(t) (2.6)

and ξ(t), uj (t), vj (t), wj(t) and zj (t), j = 0, 1, 2, . . . , being analytic functions of t in
the neighbourhood of a noncharacteristic movable singularity manifold defined by φ = 0.
Similarly, the external potential Vi confining specimen i is also expanded about the singularity
manifold φ = 0 as follows (i = 1, 2):

Vi(x, t) =
∞∑

j=0

Vi,j (t)φ
j (x, t) Vi,j (t) = 1

j !

(
∂jVi(x, t)

∂xj

)
x=ξ(t)

. (2.7)

Substituting expansions (2.5a), (2.5b) and (2.7) into equations (2.4a)–(2.4d) and equating
like powers of φ we obtain:

(i) equations for determining the leading orders p, q, r and s and
(ii) recursion relations for deriving the functions uj , vj , wj and zj .

In order that equations (2.4a)–(2.4d) pass the Painlevé test it is required that the numbers
p, q, r and s be non-positive integers. Moreover, the recursion relations should be consistent
in all orders of j including the resonances.

2.1. Determination of the leading orders

To determine the leading orders p, q, r and s appearing in the expansions (2.5a) and (2.5b),
it is sufficient to consider the expansion up to the zeroth order, j = 0. By substituting this
truncated version of expansions (2.5a) and (2.5b) into (2.4a) we obtain

iu0,tφ
p + iu0pφp−1φt + λu0p(p − 1)φp−2 − T11u

2
0v0φ

2p+q − T12u0w0z0φ
p+r+s

= V1u0φ
p + V10. (2.8a)
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Three completely similar expressions arise from the substitution of the truncated version of
expansions (2.5a) and (2.5b) into the remaining three equations (2.4b)–(2.4d):

−iv0,tφ
q − iv0qφ

q−1φt + λv0q(q − 1)φq−2 − T11v
2
0u0φ

2q+p − T12v0w0z0φ
q+r+s

= V ∗
1 v0φ

q + V ∗
10 (2.8b)

iw0,tφ
r + iw0rφ

r−1φt + ϑw0r(r − 1)φr−2 − T21u0v0w0φ
p+q+r − T22w

2
0z0φ

2r+s

= V2w0φ
r + V20 (2.8c)

−iz0,tφ
s − iz0sφ

s−1φt + ϑz0s(s − 1)φs−2 − T21u0v0z0φ
p+q+s − T22w0z

2
0φ

r+2s

= V ∗
2 z0φ

s + V ∗
20. (2.8d)

By requiring the leading-order terms of equations (2.8da)–(2.8dd) to vanish one obtains
the following equations:

λp(p − 1) = T11u0v0 + T12w0z0 (2.9a)

λq(q − 1) = T11u0v0 + T12w0z0 (2.9b)

ϑr(r − 1) = T21u0v0 + T22w0z0 (2.9c)

ϑs(s − 1) = T21u0v0 + T22w0z0 (2.9d)

and

p + q = −2 (2.10a)

r + s = −2 (2.10b)

from which the leading orders can uniquely be determined to be

p = q = r = s = −1. (2.11)

For later use we infer from equations (2.9a)–(2.9d) the useful relation(
u0v0

w0z0

)
= 2

$

(
T22 −T12

−T21 T11

) (
λ

ϑ

)
(2.12)

with $ = T11T22 − T12T21. If accidentally $ = 0 happens then we may use the relation
u0v0/w0z0 = const instead of (2.12), which case needs a special consideration.

2.2. Recursion relations

The next step of the P analysis is to again substitute expansions (2.5a), (2.5b) and (2.7) with
the leading orders p = q = r = s = −1 into equations (2.4a)–(2.4d). After some algebra we
obtain the recursion relations


Q1 −T11u
2
0 −T12u0z0 −T12u0w0

−T11v
2
0 Q1 −T12v0z0 −T12v0w0

−T21v0w0 −T21u0w0 Q2 −T22w
2
0

−T21v0z0 −T21u0z0 −T22z
2
0 Q2




︸ ︷︷ ︸
Q(j)




uj

vj

wj

zj


 =




Fj

Gj

Hj

Kj


 (2.13a)

where j = 1, 2, . . . and

Q1 = λ(j − 1)(j − 2) − 2T11u0v0 − T12w0z0 (2.13b)

Q2 = ϑ(j − 1)(j − 2) − 2T22w0z0 − T21u0v0 (2.13c)

Fj = −iuj−2,t − i(j − 2)uj−1φt +
j−1∑
m=1

(T11umuj−mv0 + T12umw0zj−m)
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+
j−1∑
l=1

l∑
m=0

(T11umul−mvj−l + T12umwj−lzl−m)

+
j−2∑
l=0

V1,luj−l−2 + V10,j−3. (2.13d)

Here we use the notation that whenever an index is less than zero the expression itself is zero
(for example, V10,j−3 ≡ 0 for j � 2). Furthermore Gj is obtained from Fj by interchanging
ul and vl and letting i → −i, V1,l → V ∗

1,l and V10,l → V ∗
10,l . The expressions Hj and Kj can

be obtained, respectively, from Fj and Gj by interchanging ul and wl , vl and zl , T12 and T21,
T11 and T22, and letting V1 → V2 and V10 → V20.

The expressions Fj , Gj , Hj and Kj at a given j depend only on the expansion coefficients
ul , vl , wl and zl with l < j . Therefore the equation (2.13a) represents recursion relations for
the determination of the unknowns uj , vj , wj and zj from the knowledge of the prior calculated
coefficient functions ul , vl , wl and zl with l < j .

2.3. Resonances

The above recursion relations (2.13a) determine the unknown expansion coefficients uniquely
unless the determinant of the matrix Q(j) is zero. Those values of j at which the determinant
det(Q(j)) becomes zero are called resonances. After some calculation one obtains

det(Q(j)) = λ2ϑ2(j + 1) j 2(j − 3)2(j − 4)

(
j 2 − 3j + 4 − 2

ϑT11u0v0 + λT22w0z0

λϑ

)

(2.14)

so the resonances of the coupled GP equations (2.3a) and (2.3b) are as follows:

jres = {−1, 0, 0, 3, 3, 4, j1, j2
}
. (2.15)

Here j1 and j2 are the roots of the expression contained in the last parentheses of equation (2.14)
and can formally be given as

j1,2 = 3

2
± 1

2

√
8

ϑT11u0v0 + λT22w0z0

λϑ
− 7 ∈ Z. (2.16)

As indicated, the resonances j1 and j2 must be integers so that the square root must be
odd integers. From this one obtains a condition√

8
ϑT11u0v0 + λT22w0z0

λϑ
− 7 = 2m + 1 m = 0, 1, 2, . . . (2.17)

involving the characteristic parameters Tij , λ and ϑ of the GP equations (2.3a) and (2.3b).
The number m can be considered as a classification number which classifies possible external
potential families for which the system (2.3a), (2.3b) is integrable (in the general sense of
integrability [27, 28]).

By re-arranging (2.17) and using relation (2.12) one obtains a more explicit condition
necessary for any coupled GP equations to pass the P test:

2 T11T22 − (ϑ/λ) T11T12 − (λ/ϑ) T21T22

T11T22 − T12T21
= 1

16

[
(2m + 1)2 + 7

]
m = 0, 1, 2, . . . .

(2.18)

It is also clearly seen that this expression depends only on the ratios λ/ϑ , T11/T21 and T12/T22

involving the characteristic parameters of the GP equations.



4974 D Schumayer and B Apagyi

In summary, any coupled system of GP equations (2.3a), (2.3b) passes the Painlevé test
only if its characteristic parameters λ, ϑ and Tij (i, j = 1, 2) obey the relation (2.18), otherwise
it is probably not integrable. (See the discussions about the connection of the P test with
integrability in [27, 28].)

2.4. Compatibility conditions

At each element of jres, the recursion relations (2.13a) cannot be used for the calculation
of the expansion coefficients. At these indices arbitrary functions may arise in the
expansions (2.5a) and (2.5b). However, in order that the solution be expressible in the form of
the expansions (2.5a), (2.5b) and (2.7), the recursion relations should be identically satisfied at
j ∈ jres. The investigation of these specific requirements leads to relations called compatibility
conditions which impose restrictions for the external potentials Vi(x, t), i = 1, 2. We note
that only the positive resonances are of interest.

2.4.1. Compatibility condition belonging to resonance j = 3. Let us consider
equations (2.13a) at j = 3 and use equation (2.12). The result is an equation


−T11u0v0 −T11u
2
0 −T12u0z0 −T12u0w0

−T11v
2
0 −T11u0v0 −T12v0z0 −T12v0w0

−T21v0w0 −T21u0w0 −T22w0z0 −T22w
2
0

−T21v0z0 −T21u0z0 −T22z
2
0 −T22w0z0




︸ ︷︷ ︸
Q(3)




u3

v3

w3

z3


 =




F3

G3

H3

K3


 (2.19)

whose matrix Q(3) has rank two. Indeed, by multiplying the first row with v0, the second with
u0, one obtains a matrix which possesses identical elements in its first two rows. Performing
similar manipulations, one can make the third and fourth rows also identical. It then follows
that the above recursion relation can only be consistent if the following compatibility conditions
hold:

F3v0 = G3u0 (2.20a)

H3z0 = K3w0. (2.20b)

We emphasize that the above conditions are not independent from each other because, for
example as shown by (2.13d), F3 contains elements wi and zi with i � 3. Similarly, G3, H3

and K3 also contain all types of expansion coefficient ui , vi , wi and zi with i � 3.

2.4.2. Compatibility condition belonging to resonance j = 4. By taking the recursion
relations (2.13a) at j = 4 and applying equation (2.12), one arrives at the following equation:


4λ − T11u0v0 −T11u
2
0 −T12u0z0 −T12u0w0

−T11v
2
0 4λ − T11u0v0 −T12v0z0 −T12v0w0

−T21v0w0 −T21u0w0 4ϑ − T22w0z0 −T22w
2
0

−T21v0z0 −T21u0z0 −T22z
2
0 4ϑ − T22w0z0




︸ ︷︷ ︸
Q(4)




u4

v4

w4

z4


 =




F4

G4

H4

K4


 .

(2.21)

In the general case the matrix Q(4) has rank three, which means that only three of its rows
are independent. Using this fact, after some calculation we obtain the following compatibility
condition:

T21(F4v0 + G4u0) + T12(H4z0 + K4w0) = 0. (2.22)
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We should investigate also the possibility when rank (Q(4)) = 2. In this case the
compatibility condition decomposes into two distinct parts as can be seen in the following
way. The rank of a matrix is equal to the maximal order of its nonsingular submatrices. We
should thus calculate the determinants of all third-order submatrices of Q(4) and investigate
the cases when they simultaneously become zero. After a simple but lengthy calculation the
following results are obtained for the determinants of the four third-order submatrices of the
matrix Q(4): {

16λϑT21u0z0; −16λϑT12u0w0; 16λϑT12w0z0; −16λϑT21u
2
0

}
. (2.23)

Because λ and ϑ are the nonzero mass parameters (see definitions (2.2a)), it is clear that
the subdeterminants vanish only if T12 = T21 = 0. This situation, however, corresponds to
two uncoupled GP equations. We have thus arrived at the compatibility condition found by
Clarkson [30] for the single GP equations:

F4v0 + G4u0 = 0 (2.24a)

H4z0 + K4w0 = 0. (2.24b)

We note, however, that the general compatibility condition, as given by equation (2.22),
leads to external potentials (discussed in the next section) more complicated than that obtainable
from equations (2.24ba), (2.24bb) with T12 = T21 = 0.

2.4.3. Compatibility condition belonging to resonances j1 and j2. We now consider the
matrix Q(j1,2) with j1,2 taken from equation (2.16). In general the matrix Q(j1,2) has rank
three, from which the following compatibility condition arises:

ϑw0z0(Fj1,2v0 + Gj1,2u0) − λu0v0(Hj1,2z0 + Kj1,2w0) = 0. (2.25)

As before we analyse also the case when rank
(
Q(j1,2)

) = 2. After a lengthy but simple
calculation we obtain the determinants of the four third-order submatrices of the matrix Q(j12)

to be{
T21$

5 (u0v0)
3 (w0z0)

2 z0; −T21$
5 (u0v0)

3 (w0z0)
2 ;

T21$
5 (u0v0)

3 (w0z0)
2 z0; −T12$

6 (u0v0w0z0)
3
}
. (2.26)

Now, as clearly seen the determinants (2.26) vanish simultaneously only if T12 = T21 = 0
(or $ = 0, which case is not considered here). On the other hand, for this decoupled
case one can determine the values j1 and j2 by using definition (2.16) and relation (2.12)
to be j1 = 4 and j2 = −1. However, then, as can be checked easily by using (2.13a),
the corresponding compatibility conditions reduce to those already discussed in connection
with equations (2.24ba) and (2.24bb). We note however that, depending on the experimental
situations, it is possible to obtain resonance values j1 and j2 greater than four. We should
then use equation (2.25) for drawing conclusions about the admissible form of the external
potentials.

3. Possible forms of the external potentials

In the preceding section we found equations, called compatibility conditions, that must be
fulfilled in order for the GP equations to pass the P test. In this section we exploit the
consequences of these equations for the general form of the external potentials V1, V10, V2

and V20 appearing in equations (2.1a), (2.1b) and (2.3a), (2.3b). The experimental realization
of such potentials may lead to detection of stable structures (such as vortices) in BECs.
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Although the compatibility conditions are related to indices j at which the recursion
relations (2.13a) do not apply to the calculation of the unknown coefficients uj (t), vj (t), wj(t)

and zj (t), the equations (2.20a), (2.20b), (2.22) and (2.25) can be reduced to expressions in
which only the zeroth-order coefficient functions u0(t), v0(t), w0(t) and z0(t) are present. This
is because, at j ∈ jres, use of the recursion relations (2.13a) and the definition (2.13d) of the
functions Fj , Gj , Hj and Kj leads always to expansion coefficients uj , vj , wj and zj that are
expressed by the zeroth-order functions u0(t), v0(t), w0(t) and z0(t).

In the following we shall present the results of the calculation belonging to each
compatibility condition. For the resonance j = 3 the calculation can be performed easily
by hand, but for j = 4 the computer program Maple [34] had to be invoked in order to
perform the analytic manipulations. As a result of the Maple program, all the coefficients
which multiply the higher-order powers of φt proved to be analytically zero. The expression
associated with the zeroth-order power of φt has been evaluated further by hand to obtain the
final results, which will be presented and discussed below.

3.1. Conditions for the potentials arising from j = 3

In section 2 it has been shown that at j = 3 the compatibility condition decomposes into two
distinct parts, which are however not independent of each other (see equations (2.20a) and
(2.20b) and the remark thereafter).

The elaboration of the compatibility conditions (2.20a) and (2.20b) related to j = 3 yields
the relations

F3v0 − G3u0 = 0 −→ (V1,1 − V ∗
1,1)u0v0 + V10,0v0 − V ∗

10,0u0 = 0 (3.1a)

H3z0 − K3w0 = 0 −→ (V2,1 − V ∗
2,1)w0z0 + V20,0z0 − V ∗

20,0w0 = 0. (3.1b)

It is clear from equation (2.12) that only the products u0v0 and w0z0 are determined uniquely
so that one element of each pair can be chosen arbitrarily. With the choices u0 = 1, w0 = 1
the above relations can only be satisfied if

V1,1 − V ∗
1,1 = 0 and V10,0 = V ∗

10,0 ≡ 0 (3.2a)

V2,1 − V ∗
2,1 = 0 and V20,0 = V ∗

20,0 ≡ 0. (3.2b)

These conditions show that the expansion coefficients V1,1 and V2,1 are real. Moreover, using
the definition (2.7) for the expansion coefficients Vi,j and the results (3.2), we obtain

0 = V10,0 = 1

0!

∂0V10(x, t)

∂x0

∣∣∣∣
x=ξ(t)

= V10(ξ(t), t). (3.3)

Since this equality holds for any arbitrary function ξ(t), it follows that V10(x, t) must vanish.
Similar argumentation leads to disappearance of V20(x, t).

In summary we conclude that in order for the equations (2.3a) and (2.3b) to pass the P test
the inhomogeneity terms must vanish and the first-order expansion coefficient of the external
potentials must be real:

V10 = V20 = 0 (3.4a)

V1,1 = V ∗
1,1 and V2,1 = V ∗

2,1. (3.4b)

3.2. Conditions for the potentials arising from j = 4

Without presenting the details of the algebraic manipulations, we state that the compatibility
condition (2.22) (partly with the aid of the formula manipulation program Maple) leads to the
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relation
T21

2λ
u0v0(V1,0 − V ∗

1,0)
2 +

T12

2ϑ
w0z0(V2,0 − V ∗

2,0)
2

−T12w0z0(V2,2 + V ∗
2,2) − T21u0v0(V1,2 + V ∗

1,2)

−i
T21

2λ
u0v0

∂

∂t
(V1,0 − V ∗

1,0) − i
T12

2ϑ
w0z0

∂

∂t
(V2,0 − V ∗

2,0) = 0 (3.5)

in which, as expected, only the zeroth-order coefficient functions u0(t), v0(t), w0(t) and z0(t)

appear together with the parameters λ, ϑ and Tij (i, j = 1, 2) in a special combination. This
condition looks much more complicated than that obtained above (cf with equations (3.1a)
and (3.1b)). Moreover both potentials V1 and V2 are occurring within a single relation.

Let us now write the external potentials in the form

V1(x, t) = α(x, t) + iβ(x, t) (3.6a)

V2(x, t) = γ (x, t) + iδ(x, t) (3.6b)

where α, γ and β, δ are real functions. Exploiting the reality of V1,1 and V2,1 expressed by
relation (3.4b) and using the definition (2.7), we obtain the results

β(x, t) ≡ β(t) and δ(x, t) ≡ δ(t). (3.7)

This condition, which can be checked easily by direct substitution, tells us that the imaginary
part of the potential may depend only on the time t and not on the space x variables. Using
this last result and inserting the definitions (3.6a) and (3.6b) into the relation (3.5) we obtain
the following expression:[
−2

λ
T21u0v0β

2 − 2

ϑ
T12w0z0δ

2 +
1

λ
T21u0v0

dβ

dt
+

1

ϑ
T12w0z0

dδ

dt

]

−T12w0z0
∂2γ

∂x2
− T21u0v0

∂2α

∂x2
= 0. (3.8)

Because the quantity in the square bracket depends only on time t , integration by x twice yields
the following results:

T12w0z0γ + T21u0v0α = C1(t)x
2 + C2(t)x + C3(t) (3.9)

where the coefficients C1(t), C2(t) and C3(t) depend only on time t , and C2 and C3 are
arbitrary real functions. By re-substituting this latter equation into expression (3.8), we obtain
the constraint for the function C1(t) as follows:

C1(t) = T21

λ
u0v0

(
1

2

dβ

dt
− β2

)
+

T12

ϑ
w0z0

(
1

2

dδ

dt
− δ2

)
. (3.10)

We emphasize that the above result does not mean a restriction for the individual form of
the real part of the external potentials V1 and V2. As equation (3.9) shows only a weighted
sum of the real parts α and γ is constrained by the compatibility conditions (3.5) belonging to
the resonance j = 4.

Let us now exhibit a possible consequence of the general constraints (3.9) and (3.10) for
the potentials by starting from an obvious splitting of the coefficient C1(t) as follows:

C1(t) = C
(1)
1 (t) + C

(2)
1 (t) (3.11)

with

C
(1)
1 = T21u0v0

λ

(
1

2

dβ

dt
− β2

)
and C

(2)
1 = T12w0z0

ϑ

(
1

2

dδ

dt
− δ2

)
. (3.12a)
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Then the compatibility condition expressed by equation (3.9) can be satisfied by the following
choices:

T12w0z0γ = C
(1)
1 x2 + C

(1)
2 x + C

(1)
3 + f (x, t) (3.13a)

T21u0v0α = C
(2)
1 x2 + C

(2)
2 x + C

(2)
3 − f (x, t) (3.13b)

where C
(1)
i and C

(2)
i (i = 2, 3) are arbitrary real functions of time t and f is an arbitrary real

function of x and t . Using the expressions (3.6a) and (3.6b) we obtain the following possible
form for the external potentials:

V1 = 1

λ

(
1

2

dβ(t)

dt
− β2(t)

)
x2 + V

(1)
1 (t)x + V

(0)
1 (t) − Ṽ (x, t)

T21 (λT22 − ϑT12)
+ iβ(t) (3.14a)

V2 = 1

ϑ

(
1

2

dδ(t)

dt
− δ2(t)

)
x2 + V

(1)
2 (t)x + V

(0)
2 (t) +

Ṽ (x, t)

T12 (ϑT11 − λT21)
+ iδ(t) (3.14b)

where V
(1)

1 , V (0)
1 , V (1)

2 and V
(0)

2 are arbitrary real functions of time t and Ṽ (x, t) represents
an arbitrary real potential function which may be used conveniently in design of experiments
with BECs. At this point we have to note that these formulae cannot be used for the uncoupled
case, since when T12 = T21 = 0, then the compatibility condition (2.22) changes to (2.24ba),
(2.24bb) and in this way Ṽ (x, t) does not arise.

In summary we conclude that in order for the coupled GP equations (2.3a) and (2.3b) to
pass the P test, a special combination of the real parts of the potentials V1 and V2 may depend
only quadratically and/or linearly on the spatial coordinate x. A stringent relationship can
be established between the coefficient of the quadratic terms and the imaginary parts, which,
in turn, may depend only on time t . An additional real potential Ṽ of general form may be
introduced which explicitly exhibits coupling between the external potentials V1 and V2.

4. Discussion of the results

In this section we discuss the results from various points of view and make comparison with
related results obtained by others.

4.1. Presence of source terms

In the course of the theoretical study of two-component BECs with attractive interaction, it
has been found [22] that the decay and growth of number of atoms is best accounted for by
introducing an imaginary contact interaction term in the GP equations. We now see that our
analysis enables the existence of such source terms, by appropriately chosen β(t) and δ(t)

(see equations (3.14a), (3.14b)). This result holds also in the case of one-component BECs as
found by Clarkson [30].

4.2. Uncoupled case

Next, we investigate the case T12 = T21 ≡ 0, when the system of the GP equations (2.3a) and
(2.3b) is decoupled. As an example we derive the resonances. Our general equations should
reduce twice to earlier results obtained by Clarkson [30] for the one-component GP equation.
Starting from the general expression (2.14) and applying the useful formula (2.12) one obtains

det
(
Q(j)

) = λ2ϑ2(j + 1) j 2(j − 3)2(j − 4)

(
j 2 − 3j + 4 − 2

T11T22

$

2λϑ + 2λϑ

λϑ

)

= λ2ϑ2(j + 1) j 2(j − 3)2(j − 4)(j 2 − 3j − 4)
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= λ2ϑ2(j + 1)2 j 2(j − 3)2(j − 4)2. (4.1)

The resonances (−1, 0, 3, 4) are those found by Clarkson [30] and all have a multiplicity of
two as a result of the double number of the (uncoupled) GP equations.

4.3. Sign of the potential

One of the experimental situations where the coupled GP equations (2.3a) and (2.3b) serve as a
theoretical basis is the creation of two-component BECs [16]. In such experiments alkali atoms
are confined by symmetrically arranged harmonic trap potentials. One of the possibilities of
our results is to choose in equations (3.14a) and (3.14b) all functions V

(1)
1 , V

(0)
1 , V

(1)
2 , V

(0)
2 ,

β and δ equal to zero and let the potential Ṽ (x, t) operate as a field confining the alkali gas
particles. It is then required that in equations (3.14a) and (3.14b) the terms in which our
confining potential Ṽ occurs have the same sign. The condition that those two terms with Ṽ

have the same sign is in general

T12T21 (λT22 − ϑT12) (ϑT11 − λT21) < 0 (4.2a)

which can be expressed also in terms of the scattering lengths as

a12a21 (λa22 − ϑa12) (ϑa11 − λa21) < 0. (4.2b)

Because, physically, a12 = a21, the above condition for the equality of signs of the Ṽ terms in
equations (3.14a), (3.14b) is fulfilled for the usual experimental case with λ = ϑ if

a11 < a12 < a22 or a22 < a12 < a11. (4.3)

If the scattering lengths a12 = a21 are greater or less than both a11 and a22 then the sign of the
terms containing the arbitrary potential Ṽ is different, which corresponds to untrapping one of
the BEC components.

4.4. Fulfillment of equation (2.18)

The best studied example of the two-component BECs involves Rb atoms in two different
hyperfine states. It has been found experimentally [7,8,16], and numerically [18] that a stable
configuration of soliton-like vortex in the two-component condensate is achieved in the case
where the scattering lengths are in the proportion:

a11 : a12 : a22 = 1.03 : 1 : 0.97 with a12 ≡ a21. (4.4)

Let us now check whether these ratios obey our general condition (2.18) with integer m. Since
λ/ϑ = 1 expression (2.18) can be written as follows:

2(a11/a21)(a22/a12) − (a11/a21) − (a22/a12)

(a11/a21)(a22/a12) − 1
= 1

16

[
(2m + 1)2 + 7

]
. (4.5)

The insertion of the above ratios gives

2 · 1.03 · 0.97 − 1.03 − 0.97

1.03 · 0.97 − 1
= −0.0018

−0.0009
= 2 ≡ 1

16

[
(2m + 1)2 + 7

]
(4.6)

which yields

m = 2. (4.7)

This result means that the experimental ratios (4.4) correspond to just one of the possible
solutions of the GP equations characterized by a m = 2 potential family.
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Proceeding further, one can determine the resonances belonging to the experimentally
found ratios (4.4) to be (cf with equations (2.16) and (2.17))

j1 = 2 + m = 4 j2 = 1 − m = −1. (4.8)

This result means that no further work is needed, the underlying potential falls into the
category defined by the compatibility condition for j = 4; a possible representation of such
potentials is given by (3.14a) and (3.14b). Indeed, the quadratic trap potential used in the
experiments suits well the general form of potentials obtained from the analysis of the resonance
at j = 4.

5. Summary

In this paper the first step towards verification of integrability of the coupled GP equations by
means of the P analysis has been carried out. It has been shown that the GP equations pass the P
test provided a special relation among the system parameters (masses and interaction strengths)
is satisfied (cf with (2.18)). One of the recent experiments has been taken as an example. In
this experiment [7, 8, 16] and a subsequent numerical study [18], the vortex stability of a
two-component BEC has been investigated. It is found that the system parameters at which
stability occurs are just in the proportion which fits our relation (2.18) with m = 2, a condition
necessary for the GP equation to pass the P test.

As the GP equations play a great role in describing BECs, particular attention has been paid
to establishing the admissible forms of the confining trap potentials of experimental interest. It
has been found that, in addition to the prescribed form resulting from the P analysis of a single
GP equation, there is a possibility of introducing an extra potential term of arbitrary shape
into the external potentials (cf with equations (3.14a) and (3.14b)). Also, some discussion of
the results has been added, which includes the comparison of the earlier results obtained for
the one-component GP equation, the role of the source (imaginary) terms β(t) and δ(t) in the
potentials, and the sign of the additional potential terms.

Finally, we add a remark to the fulfillment of equation (2.18) with integer m. In the light of
experimental errors the above agreement m = 2 may seem to be accidental. We note however
that soliton-type structures (e.g. vortices in 3D) possess an outstanding stability sometimes
called ‘robustness’, which enables these particle-like formations to survive for a long time or
even to arise in circumstances that do not fit the exact constraint of mathematics. Therefore
equation (2.18) may prove also useful in exploring other regions of parameters where such
stable structures are to be observed in binary condensates.
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